MomentumRNN: Integrating Momentum
into Recurrent Neural Networks

Tan M. Nguyen Richard G. Baraniuk
Department of ECE Department of ECE
Rice University, Houston, USA Rice University, Houston, USA
Andrea L. Bertozzi Stanley J. Osher
Department of Mathematics Department of Mathematics
University of California, Los Angeles University of California, Los Angeles
Bao Wang

Department of Mathematics
Scienti ¢ Computing and Imaging (SCI) Institute
University of Utah, Salt Lake City, UT, USA

Abstract

Designing deep neural networks is an art that often involves an expensive search
over candidate architectures. To overcome this for recurrent neural nets (RNNs), we
establish a connection between the hidden state dynamics in an RNN and gradient
descent (GD). We then integrate momentum into this framework and propose a hew
family of RNNs, calledMomentumRNN3$Ne theoretically prove and numerically
demonstrate that MomentumRNNSs alleviate the vanishing gradient issue in training
RNNs. We study the momentum long-short term memory (MomentumLSTM) and
verify its advantages in convergence speed and accuracy over its LSTM counterpart
across a variety of benchmarks. We also demonstrate that MomentumRNN is
applicable to many types of recurrent cells, including those in the state-of-the-
art orthogonal RNNs. Finally, we show that other advanced momentum-based
optimization methods, such as Adam and Nesterov accelerated gradients with
a restart, can be easily incorporated into the MomentumRNN framework for
designing new recurrent cells with even better performance.

1 Introduction

Mathematically principled recurrent neural nets (RNNs) facilitate the network design process and
reduce the cost of searching over many candidate architectures. A particular advancement in RNNs
is the long short-term memory (LSTM) modé&4] which has achieved state-of-the-art results in
many applications, including speech recogniti@g]] acoustic modelingg3, 51], and language
modeling §6]. There have been many efforts in improving LSTMY] introduces a forget gate

into the original LSTM cell, which can forget information selectivel¥g] further adds peephole
connections to the LSTM cell to inspect its current internal sta#@sfo reduce the computational
cost, a gated recurrent unit (GRWY1] uses a single update gate to replace the forget and input gates
in LSTM. Phased LSTM42] adds a new time gate to the LSTM cell and achieves faster convergence
than the regular LSTM on learning long sequences. In additi#) gnd [50] introduce a biological

cell state and working memory into LSTM, respectively. Nevertheless, most of RNNs, including
LSTMs, are biologically informed or even ad-hoc instead of being guided by mathematical principles.

Please correspond to: wangbaonj@gmail.com or mn15@rice.edu
34th Conference on Neural Information Processing Systems (NeurlPS 2020), Vancouver, Canada.

1.1 Recap on RNNs and LSTM

Recurrent cells are the building blocks of RNNs. A recurrent cell employs a cyclic connection to
update the current hidden statg] using the past hidden state,(;) and the current input data ()
[14]; the dependence &f; onh; ;1 andx; in a recurrent cell can be written as

hy= (Uhy 1+ Wx+ b); x; 2 R% andh; 1;hy 2 R"; t=1;2, ;T;)
whereU 2 R" ":w 2 R" 9 andb 2 R" are trainable parameters{) is a nonlinear activation
function, e.g., sigmoid or hyperbolic tangent. Error backpropagation through time is used to train
RNN, but it tends to result in exploding or vanishing gradied}s Thus RNNs may fail to learn long

term dependencies. Several approaches exist to improve RNNs' performance, including enforcing
unitary weight matrices [1, 62, 25, 60, 38, 22], leveraging LSTM cells, and others [35, 30].

LSTM cells augment the recurrent cell with “gates” [24] and can be formulated as

it= (Uinhy 1+ Wixx¢ + bi); (it : input gate
e =tanh(Uegnhy 1+ WXt + bg); (e : cellinpud
Ct=Ct 1t+iy & (ct : cell statg 2)
ot = (Uonht 1+ WoxXt + bo); (o : output gat}
hy{ = oy tanhc; (h¢ : hidden state

whereU 2 R" ", w 2 R" 9 andb 2 R" are learnable parameters, anddenotes the
Hadamard product. The input gate decides what new information to be stored in the cell state, and the
output gate decides what information to output based on the cell state value. The gating mechanism
in LSTMs can lead to the issue of saturation [59, 8].

1.2 Our Contributions

In this paper, we develop a gradient descent (GD) analogy of the recurrent cell. In particular, the
hidden state update in a recurrent cell is associated with a gradient descent step towards the optimal
representation of the hidden state. We then propose to integrate momentum that used for accelerating
gradient dynamics into the recurrent cell, which results in the momentum cell. At the core of the
momentum cell is the use of momentum to accelerate the hidden state learning in RNNs. The
architectures of the standard recurrent cell and our momentum cell are illustrated in Mg

provide the design principle and detailed derivation of the momentum cell in Se2tasd?2.4.

We call the RNN that consists of momentum cells the MomentumRNN. The major advantages of
MomentumRNN are fourfold:

MomentumRNN can alleviate the vanishing gradient problem in training RNN.
MomentumRNN accelerates training and improves the test accuracy of the baseline RNN.

MomentumRNN is universally applicable to many existing RNNs. It can be easily implemented
by changing a few lines of the baseline RNN code.

MomentumRNN is principled with theoretical guarantees provided by the momentum-accelerated
dynamical system for optimization and sampling. The design principle can be generalized to other
advanced momentum-based optimization methods, including Ad8hafid Nesterov accelerated
gradients with a restart [44, 61].

1.3 Related Work

Dynamical system viewpoint of RNNs.Leveraging the theory of dynamical system to improve
RNNSs has been an interesting research directi®ti:groposes a gated RNN, which is principled

by non-chaotical dynamical systems and achieves comparable performance to GRUs and LSTMs.
[57] proposes a weight initialization strategy inspired by dynamical system theory, which helps the
training of RNNs with ReLU nonlinearity. Other RNN algorithms derived from the dynamical system
theories include45, 9, 10, 26]. Our work is the rst that directly integrates momentum into an RNN

to accelerate the underlying dynamics and improve the model's performance.

Momentum in Optimization and Sampling. Momentum has been a popular technique for accel-
erating (stochastic) gradient-based optimizatié® PO, 55, 28, 3, 48] and sampling algorithms

[13, 41] A particularly interesting momentum is the iteration-dependent one in N#343, 2],

which has a signi cantly better convergence rate than constant momentum for convex optimization.
The stochastic gradient NAG that employs a scheduled restart can also be used to accelerate DNN
training with better accuracy and faster convergence [61].

1$2'33$%&()$+ IS8 H() S +HOS

Vi= U vpg+ s W xq pl v+ st W x;

ht=!(U!ht!1+W!Xt) =
me=!1mya+@" 1) (W! x)?

k1 1

HOSO(HSH =

11453" 6)$**Q(#$L = 0

| I
| I
| I
+-)HS% : I"4$968! : $
he=1(U! hyi+ vy he=1 Ul hy+ o=

I | m+
| I Ve N

hir 1 U y he | | hy U 1 [T D oh
l | |:'— —> Vi

| Vu 1
| | A
: : > 'ialu
Xt w | | — Ty

| I
| I
| I
| I
|
1

Figure 1: lllustration of the recurrent cell (left), Momentum/NAG cell (middle), and Adam/RMSProp
cell (right). We draw a connection between the dynamics of hidden states in the recurrent cell and
GD. We then introduce momentum to recurrent cell as an analogy of the momentum accelerated GD.

Momentum in DNNs. Momentum has also been used in designing DNN architectu2&sd¢velops
momentum contrast as a way of building large and consistent dictionaries for unsupervised learning
with contrastive loss. At the core of this approach is a momentum-based moving average of the queue
encoder. Many DNN-based algorithms for sparse coding are designed by unfolding the classical
optimization algorithms, e.g., FISTA], in which momentum can be used in the underpinning
optimizer [56, 7, 36, 27, 40].

1.4 Notation
We denote scalars by lower or upper case letters; vectors and matrices by IBwer and upper case bold
face letters, respectively. For a vector (x1; ;xa)T 2 RY, we usekxk = (1, jxij9)*2to

denote its , norm. For a matri¥A , we useA T (T in roman type) and to denote its transpose and
inverse, respectively. Also, we denote the spectral norf aSkA k. We denote the-dimensional
standard Gaussian 85(0; 14 4), where0 is thed-dimensional zero-vector ang 4 is an identity
matrix. For a function (x) : R9! R, we denote 1(x) asitsinverse and (x) as its gradient.

2 Momentum RNNSs

2.1 Background: Momentum Acceleration for Gradient Based Optimization and Sampling

Momentum has been successfully used to accelerate the gradient-based algorithms for optimization
and sampling. In optimization, we aim to nd a stationary point of a given fundtipr); x 2 RY.
Starting fromx 2 RY, GD iterates ag; = x; 1 sr f (x;) with s > 0 being the step size. This
can be signi cantly accelerated by using the momentum [55], which results in
Po=Xo; Pt= Pt atsrf(Xe); xe=Xt 1 p;t L 3)
where 0 is the momentum constant. In sampling, Langevin Monte Carlo (LM@))if used to
sample from the distribution / expf f (x)g, whereexpf f (x)gis the probability distribution
function. The update at each iteration is given by
Xt= Xt 1 STf(xy)+ 2s¢s Ot 1, ¢ N (0;lg q): (4)
We can also use momentum to accelerate LMC, which results in the following Hamiltonian Monte
Carlo (HMC) update [12]: b
Po=Xo; Pt=Pt 1 SPr 1 srf(xe)+ 2s gxe=Xga1+tspst 1 (5
where ; N (0;14 4) while ; ;s> 0 are the friction parameter, inverse mass, and step size, resp.
2.2 Gradient Descent Analogy for RNN and MomentumRNN

Now, we are going to establish a connection between RNN and GD, and further leverage momentum
to improve RNNs. Lefv = [W;b]ande; = [x¢;1]" in (1), then we havér, = (Uhy 1+ ‘foet).

For the ease of notation, without ambiguity we denate= 1 andx; := ®;. Then the recurrent
cell can be reformulated as

he= (Uht 1+ WXy): (6)

Moreover, let ():= (U()) andu; := U W x,, we can rewrite) as
he = (hy 1+ uy): (7)
If we regard u; as the “gradient” at the-th iteration, then we can consid@) as the dynamical
system which updates the hidden state by the gradient and then transforms the updated hidden state
by the nonlinear activation function We propose the following accelerated dynamical system to
accelerate the dynamics @f), which is principled by the accelerated gradient descent theory (see
subsectior?.l):
pt= Ppt 1 Suy; hy= (hy 1 po)s (8)
where 0;s > 0 are two hyperparameters, which are the analogies of the momentum coef cient
and step size in the momentum-accelerated GD, respectivelyw;Let U p;, we arrive at the
following dynamical system:
Vi= Vp 1+ SWxy; hy= (Uhy 1+ vy): 9)
The architecture of the momentum cell that corresponds to the dynamical s{@térplotted
in Fig. 1 (middle). Compared with the recurrent cell, the momentum cell introduces an auxiliary
momentum state in each update and scales the dynamical system with two positive hyperparameters
ands.

Remark 1 Different parameterizations f8) can result in different momentum cell architectures.
For instance, if we lev = p¢, we end up with the following dynamical system:

Vi= Vi 1+ SWXx; hy= (Uhy ¢+ Uvy); (10)

where® := U W is the trainable weight matrix. Even thou¢®) and (10) are mathematically
equivalent, the training procedure might cause the MomentumRNNSs that are derived from different
parameterizations to have different performances.

Remark 2 We put the nonlinear activation in the second equatiof®to ensure that the value of
h¢ is in the same range as the original recurrent cell.

Remark 3 The derivation above also applies to the dynamical systems in the LSTM cells, and we
can design the MomentumLSTM in the same way as designing the MomentumRNN.

2.3 Analysis of the Vanishing Gradient Issue: Momentum Cell vs. Recurrent Cell

Let ht andh; be the state vectors at the time seandt, respectively, and we suppose t.
Furthermore, assume thatis the objective to minimize, then

@_@ @_ @ Y'awa_@ V'

= = - = Ty
@ @ @ @ _ & a5 O ()

whereUT is the transpose dff andDy = dia% Uhk + W xk+1)) is a diagonal matrix with

AU hy + W x4) being its diagonal entries. = |_ }(D«U T)k, tends to either vanish or explode
[4]. We can use regularization or gradient clipping to mitigate the exploding gradient, leaving
vanishing gradient as the major obstacle to training RNN to learn long-term depend&hdyé
can rewrite 9) as

he= U(he 1 hy 2) + Y(he 1)+ sWxq ; (12)

where () is the inverse function of (). We compute@ =@, as follows
@a_@ @:_@ Y@ _a@ Y
@ @ aw @r , O a7

where®, = diag(U (hy he 1)+ Yhk) + sWxk+1)) and = diag((*)%h)). For
mostly used , e.g., sigmoid and tanfl, *())°> 1and dominateJ T .? Therefore, with an
appropriate choice of, the momentum cell can alleviate vanishing gradient and accelerate training.

BUT+ ; (13)

We empirically corroborate that momentum cells can alleviate vanishing gradients by training a
MomentumRNN and its corresponding RNN on the PMNIST classi cation task ank@ot @ k»

for each time step. Figure2 con rms that unlike in RNN, the gradients in MomentumRNN do not
vanish. More details on this experiment are provided in the Appefdix

2In the vanishing gradient scenarld,) k, is small; also it can be controlled by regularizing the loss function.

+1¥%6)0/,~

0 0
€5 200 200 0.04
.k
:'\ 400 400 0.02
:7; 600 600
=* 783 783 Al b 0.00

10K 30K 50K 70K 10K 30K 50K 70K
"#$%$%&' ()*"#)$+%

Figure 2.7, norm of the gradients of the lo&sw.r.t. the state vectdr; at each time stepfor RNN
(left) and MomentumRNN (right). MomentumRNN does not suffer from vanishing gradients.

2.4 Beyond MomentumRNN: NAG and Adam Principled Recurrent Neural Nets

There are several other advanced formalisms of momentum existing in optimization, which can be
leveraged for RNN architecture design. In this subsection, we present two additional variants of
MomentumRNN that are derived from the Nesterov accelerated gradient (NAG)-style momentum
with restart [44, 61] and Adam [28].

NAG Principled RNNs. The momentum-accelerated GD can be further accelerated by replacing the
constant momentum coef cientin (9) with the NAG-style momentum, i.e. settingo (t 1)=(t+2)

at thet-th iteration. Furthermore, we can accelerate NAG by resetting the momentum to O after
everyF iterations, i.e. = (t mod F)=((t mod F) + 3), which is the NAG-style momentum

with a scheduled restart of the appropriately selected frequerél]. For convex optimization,

NAG has a convergence ra1=t?), which is signi cantly faster than GD or GD with constant
momentum whose convergence rat®{d=t). Scheduled restart not only accelerates NAG to a linear
convergence rat®()0 < < 1) under mild extra assumptions but also stabilizes the NAG
iteration [61]. We call the MomentumRNN with the NAG-style momentum and scheduled restart
momentum the NAG-based RNN and the scheduled restart RNN (SRRNN), respectively.

Adam Principled RNNs. Adam [28] leverages the moving average of historical gradients and entry-
wise squared gradients to accelerate the stochastic gradient dynamics. We use Adam to aelerate
and end up with the following iteration

pt= pt 1+(1 Jup, me= my 1+ (1 Jur ug; he= (hy 1 S%); (14)

where ;s; > Oare hyperparametersis a small constant and chosen tolife 8 by default, and
/"~ denotes the entrywise product/square foégain, letv; = U p;, we rewrite(14) as follows

\
vi= vp 1+ (1 WX, me= my 1 +(1 Ut Ug he= (Uhg 1+Spm7:7+)2

As before, herai; := U W x,. ComputingU 1 is expensive. Our experiments suggest that
replacingu; u; byW x; W x; is suf cient and more ef cient to compute. In our implementation,
we alsorelay; = vy 1+(1 JW X tovy = V¢ 1+ SW X that follows the momentum in the
MomentumRNN) for better performance. Therefore, we proposeAiamRNNhat is given by

\'
Vi= Vg 1+ SWXg;, me= my 1+ (1 JWxe Wxg); he= (Uhe o+ 19mitti"')

(15)
In AdamRNN, if is set to 0, we achieve another new RNN, which obeys the RMSProp gradient
update rule [58]. We call this new model tRMSPropRNN

Remark 4 Both AdamRNN and RMSPropRNN can also be derived by letting p; and
W = U W asin Remark. This parameterization yields the following formulation for AdamRNN

Uv
Vi= Ve it sWx; me= me v (1)Wxe Wxy); hy= (Uhy 1+ Pm—tilﬁ

Here, we simply need to leafy andU without any relaxation. In contrast, we relaxed * to an
identity matrix in(15). Our experiments suggest that both parameterizations yield similar results.

3In contrast to Adam, we do not normalipe andm ; since they can be absorbed in the weight matrices.

Table 1: Best test accuracy at the MNIST and PMNIST tasks (%). We use the baseline results reported
in [22], [62], [60]. All of our proposed models outperform the baseline LSTM. Among the models
usingN = 256 hidden units, RMSPropLSTM yields the best results in both tasks.

MODEL N # PARAMS MNIST PMNIST
LSTM 128 68K 98:70[22],97:30[60] 92:00[22],92:62[60]
LSTM 256 270K 98:90[22],9850([62] 92:29[22],92:10[62]
MOMENTUMLSTM 128 68K 99:04 0:04 93:40 0:25
MOMENTUMLSTM 256 270K 99:08 0:05 94:72 0:16
ADAMLSTM 256 270K 99.09 0:03 9505 0:37
RMSPROPLSTM 256 270K 99:15 0:06 95:38 0:19
SRLSTM 256 270K 99.01 0:07 9382 1.85

3 Experimental Results

In this section, we evaluate the effectiveness of our momentum approach in designing RNNs in terms
of convergence speed and accuracy. We compare the performance of the MomentumLSTM with
the baseline LSTMZ4] in the following tasks: 1) the object classi cation task on pixel-permuted
MNIST [32], 2) the speech prediction task on the TIMIT datade®p, 62, 38, 23], 3) the celebrated
copying and adding taskg4, 1], and 4) the language modeling task on the Penn TreeBank (PTB)
dataset39]. These four tasks are among standard benchmarks to measure the performance of RNNs
and their ability to handle long-term dependencies. Also, these tasks cover different data modalities
— image, speech, and text data — as well as a variety of model sizes, ranging from thousands to
millions of parameters with one (MNIST and TIMIT tasks) or multiple (PTB task) recurrent cells

in concatenation. Our experimental results con rm that MomentumLSTM converges faster and
yields better test accuracy than the baseline LSTM across tasks and settings. We also discuss the
AdamLSTM, RMSPropLSTM, and scheduled restart LSTM (SRLSTM) and show their advantage
over MomentumLSTM in speci ¢ tasks. Computation time and memory cost of our models versus
the baseline LSTM are provided in Appenddx All of our results are averaged over 5 runs with
different seeds. We include details on the models, datasets, training procedure, and hyperparameters
used in our experiments in Appendi For MNIST and TIMIT experiments, we use the baseline
codebase provided by [5]. For PTB experiments, we use the baseline codebase provided by [54].

3.1 Pixel-by-Pixel MNIST

In this task, we classify image samples of hand-written digits from the MNIST da@@&enfo one

of the ten classes. Following the implementation3#][we atten the image of original size 28

28 pixels and feed it into the model as a sequence of length 784. In the unpermuted task (MNIST),
the sequence of pixels is processed row-by-row. In the permuted task (PMNIST), a xed permutation
is selected at the beginning of the experiments and then applied to both training and test sequences.
We summarize the results in TaldleOur experiments show thktomentumLSTM achieves better

test accuracy than the baseline LSTM in both MNIST and PMNIST digit classi cationuasig
different numbers of hidden units (i.B. = 128; 256). Especially, the improvement is signi cant on

the PMNIST task, which is designed to test the performance of RNNs in the context of long-term
memory. Furthermore, we notice tHdbmentumLSTM converges faster than LSmMIl settings.
Figure3 (left two panels) corroborates this observation when ubing 256 hidden units.

3.2 TIMIT Speech Dataset

We study how MomentumLSTM performs on audio data with speech prediction experiments on the
TIMIT speech dataset [16], which is a collection of real-world speech recordings. As rst proposed
by [62], the recordings are downsampled to 8kHz and then transformed into log-magnitudes via a
short-time Fourier transform (STFT). The task accounts for predicting the next log-magnitude given
the previous ones. We use the standard train/validation/test separatéih 34,[6], thereby having

3640 utterances for the training set with a validation set of size 192 and a test set of size 400.

The results for this TIMIT speech prediction are shown in TablResults are reported on the test

set using the model parameters that yield the best validation loss. Again, we see the advantage
of MomentumLSTM over the baseline LSTM. In particular, MomentumLSTM yields much better
prediction accuracy and faster convergence speed compared to LSTM. Figigie two panels)

shows the convergence of MomentumLSTM vs. LSTM when ubling 158 hidden units.

MomentumLSTM —— AdamLSTM RMSPropLSTM == SRLSTM = LSTM

|

0 2.0 MNIST| . 2.0 MNIST | ., 102 TIMIT| , 10 TIMIT
S 3 1S 3

c 1.0 + 1.0 (= =

I ki | €101 — 310 ~—
T o0 - 0oL 1=

10% 105 10! 10?2 | 20K 40K 60K 250 500 750
Iteration Epoch Iteration Epoch

Figure 3: Train and test loss of MomentumLSTM (blue), AdamLSTM (green), RMSPropLSTM
(orange), SRLSTM (cyan), and LSTM (red) for MNIST (left two panels) and TIMIT (right two
panels) tasks. MomentumL.STM converges faster than LSTM in both tasks. For MNIST, AdamLSTM
and RMSPropLSTM converge fastest. For TIMIT, MomentumLSTM and SRLSTM converge fastest.

Table 2: Test and validation MSEs at the end of the epoch with the lowest validation MSE for the
TIMIT task. All of our proposed models outperform the baseline LSTM. Among models using
N = 158 hidden units, SRLSTM performs the best.

MODEL N # PARAMS VAL. MSE TEST MSE
LSTM 84 ~ 83K 14.87 £ 0.15 (15.42 [22,34]) 14.94 £ 0.15 (14.30 [22, 34])
LSTM 120 =~ 135K 11.77 £0.14 (13.93 [22, 34]) 11.83+0.12 (12.95 [22, 34])
LSTM 158 =~ 200K 9.33 +£0.14 (13.66 [22, 34]) 9.37 +£0.14 (12.62 [22, 34])
MOMENTUMLSTM 84 ~ 83K 10.90 +0.19 10.98 +0.18
MOMENTUMLSTM 120 =~ 135K 8.00 £ 0.30 8.04 +0.30
MOMENTUMLSTM 158 =~ 200K 5.86 +0.14 5.87+0.15
ADAMLSTM 158 =~ 200K 8.66 £0.15 8.69 +0.14
RMSPROPLSTM 158 ~ 200K 9.13+£0.33 9.17 £0.33
SRLSTM 158 =~ 200K 5.81+0.10 5.83+0.10
MomentumLSTM —— AdamLSTM RMSPropLSTM ——— SRLSTM —— LSTM
Copying Task Adding Task
10_1 Sequence of Length 2K | Sequence of Length 750
Pl
2 1 8 _ e,
= } £ 107! ha
'g 10_2 : = M
i
!
0 5000 0 500 1000
Iteration Iteration

Figure 4: Train loss vs. iteration for (left) copying task with sequence length 2K and (right) adding
task with sequence length 750. AdamLSTM and RMSPropLSTM converge faster and to better final
losses than other models. MomentumLSTM and SRLSTM converge to similar losses as LSTM.

Remark: The TIMIT dataset is not open for public, so we do not have access to the preprocessed data
from previous papers. We followed the data preprocessing in [62, 34, 6] to generate the preprocessed
data for our experiments and did our best to reproduce the baseline results. In Table 2 and 5, we
include both our reproduced results and the ones reported from previous works.

3.3 Copying and Adding Tasks

Two other important tasks for measuring the ability of a model to learn long-term dependency are
the copying and adding tasks [24, 1]. In both copying and adding tasks, avoiding vanishing/explod-
ing gradients becomes more relevant when the input sequence length increases. We compare the
performance of MomentumLSTM over LSTM on these tasks. We also examine the performance of
AdamLSTM, RMSPropLSTM, and SRLSTM on the same tasks. We define the copying and adding
tasks in Appendix A.4 and summarize our results in Figure 4. In copying task for sequences of length
2K, MomentumLSTM obtains slightly better final training loss than the baseline LSTM (0.009 vs.
0.01). In adding task for sequence of length 750, both models achieve similar training loss of 0.162.
However, AdamLSTM and RMSPropLSTM significantly outperform the baseline LSTM.

6 Broader Impact and Ethical Considerations

Recurrent neural net (RNN) is among the most important classes of deep learning models. Improving
training ef ciency and generalization performance of RNNs not only advances image classi cation
and language modeling but also bene ts epidemiological models for pandemic disease prediction.
RNNs have also been successfully used for the molecular gener28joiDeveloping better RNNs

that enable modeling of long term dependency, such as our Momentum RNN, has the potential to
facilitate life science research. In order to full Il that potential, more development is needed. For
example, the current MomentumRNN requires calibration of the momentum and step size-related
hyperparameters; developing an adaptive momentum for MomentumRNN is of great research interest.
Finally, we claim that this paper does not have any ethical issue or leverage biases in data.

7 Acknowledgement

This material is based on research sponsored by the NSF grant DMS-1924935 and DMS-1952339,
and the DOE grant DE-SC0021142. Other grants that support the work include the NSF grants
CCF-1911094, 11S-1838177, and 11S-1730574; the ONR grants N00014-18-12571 and NO0O014-17-1-
2551; the AFOSR grant FA9550-18-1-0478; the DARPA grant G001534-7500; and a Vannevar Bush
Faculty Fellowship, ONR grant NO0O014-18-1-2047.

This material is also based upon work supported by the NSF under Grant# 2030859 to the Computing
Research Association for the ClFellows Project, the NSF Graduate Research Fellowship Program,
and the NSF IGERT Training Grant (DGE-1250104).

References

[1] Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks.
In International Conference on Machine Learnjmages 1120-1128, 2016.

[2] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear
inverse problemsSIAM Journal on Imaging Scienge(1):183-202, 2009.

[3] Yoshua Bengio, Nicolas Boulanger-Lewandowski, and Razvan Pascanu. Advances in optimizing
recurrent networks. 18013 IEEE International Conference on Acoustics, Speech and Signal
Processingpages 8624—-8628. IEEE, 2013.

[4] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with
gradient descent is dif cultlEEE Transactions on Neural Networky2):157-166, 1994.

[5] Mario Lezcano Casado. Optimization with orthogonal constraints and on general manifolds.
https://github.com/Lezcano/expRNRO019.

[6] Mario Lezcano Casado. Trivializations for gradient-based optimization on manifolds. In
Advances in Neural Information Processing Systgrages 9154-9164, 2019.

[7] Rakesh Chalasani, Jose C Principe, and Naveen Ramakrishnan. A fast proximal method for
convolutional sparse coding. Trhe 2013 International Joint Conference on Neural Networks
(IJCNN), pages 1-5. IEEE, 2013.

[8] Sarath Chandar, Chinnadhurai Sankar, Eugene Vorontsov, Samira Ebrahimi Kahou, and Yoshua
Bengio. Towards non-saturating recurrent units for modelling long-term dependencies. In
Proceedings of the AAAI Conference on Arti cial Intelligenegelume 33, pages 3280-3287,
20109.

[9] Bo Chang, Minmin Chen, Eldad Haber, and Ed H Chi. Antisymmetricrnn: A dynamical system
view on recurrent neural networkarXiv preprint arXiv:1902.096892019.

[10] Zhengdao Chen, Jianyu Zhang, Martin Arjovsky, and Léon Bottou. Symplectic recurrent neural
networks.arXiv preprint arXiv:1909.133342019.

[11] Kyunghyun Cho, Bart Van Merriénboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,

Holger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-
decoder for statistical machine translati@nXiv preprint arXiv:1406.10782014.

10

[12] William Coffey and Yu P Kalmykov.The Langevin equation: with applications to stochastic
problems in physics, chemistry and electrical engineenmadume 27. World Scienti ¢, 2012.

[13] Simon Duane, Anthony D Kennedy, Brian J Pendleton, and Duncan Roweth. Hybrid monte
carlo. Physics Letters B195(2):216—222, 1987.

[14] Jeffrey L Elman. Finding structure in tim€ognitive Sciengel4(2):179-211, 1990.

[15] Santiago Fernandez, Alex Graves, and Jirgen Schmidhuber. Sequence labelling in structured
domains with hierarchical recurrent neural networksPtaceedings of the 20th International
Joint Conference on Atrti cial Intelligence, IJCAI 2002007.

[16] John S Garofolo. Timit acoustic phonetic continuous speech cacmguistic Data Consortium,
1993 1993.

[17] Felix A Gers and E Schmidhuber. LSTM recurrent networks learn simple context-free and
context-sensitive languagd&EE Transactions on Neural Networki?(6):1333-1340, 2001.

[18] Felix A Gers and Jurgen Schmidhuber. Recurrent nets that time and couPriodeedings
of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. [IJCNN 2000.
Neural Computing: New Challenges and Perspectives for the New Millenralome 3, pages
189-194. IEEE, 2000.

[19] Felix A Gers, Jurgen Schmidhuber, and Fred Cummins. Learning to forget: Continual prediction
with Istm. 1999.

[20] Gabriel Goh. Why momentum really workBistill, 2(4):e6, 2017.

[21] Kaiming He, Haogi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learniagXiv preprint arXiv:1911.057222019.

[22] Kyle Helfrich, Devin Willmott, and Qiang Ye. Orthogonal recurrent neural networks with
scaled Cayley transform. In Jennifer Dy and Andreas Krause, editmeegedings of the 35th
International Conference on Machine Learnjnglume 80 ofProceedings of Machine Learning
Researchpages 1969-1978, Stockholmsmaéssan, Stockholm Sweden, 10-15 Jul 2018. PMLR.

[23] Mikael Henaff, Arthur Szlam, and Yann LeCun. Recurrent orthogonal networks and long-
memory tasks. In Maria Florina Balcan and Kilian Q. Weinberger, ediRnsceedings of The
33rd International Conference on Machine Learninglume 48 ofProceedings of Machine
Learning Researctpages 2034-2042, New York, New York, USA, 20-22 Jun 2016. PMLR.

[24] Sepp Hochreiter and Jirgen Schmidhuber. Long short-term merNewyral Computation
9(8):1735-1780, 1997.

[25] LiJing, Yichen Shen, Tena Dubcek, John Peurifoy, Scott Skirlo, Yann LeCun, Max Tegmark,
and Marin Soljaic. Tunable ef cient unitary neural networks (eunn) and their application to
rnns. InProceedings of the 34th International Conference on Machine Learning-Volume 70
pages 1733-1741. JMLR. org, 2017.

[26] Anil Kag, Ziming Zhang, and Venkatesh Saligrama. RNNs evolving in equilibrium: A solution
to the vanishing and exploding gradiendsXiv preprint arXiv:1908.085742019.

[27] US Kamilov and H Mansour. Learning mmse optimal thresholds for sta. 2016.

[28] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimizadoXiv preprint
arXiv:1412.69802014.

[29] Panagiotis-Christos Kotsias, Josep Arls-Pous, Hongming Chen, Ola Engkvist, Christian Tyr-
chan, and Esben Jannik Bjerrum. Direct steering of de novo molecular generation using
descriptor conditional recurrent neural networks (crnns). 2019.

[30] Aditya Kusupati, Manish Singh, Kush Bhatia, Ashish Kumar, Prateek Jain, and Manik Varma.
Fastgrnn: A fast, accurate, stable and tiny kilobyte sized gated recurrent neural network. In
Advances in Neural Information Processing Systgrages 9017-9028, 2018.

11

[31] Thomas Laurent and James von Brecht. A recurrent neural network without chiaGs.
preprint arXiv:1612.062122016.

[32] Quoc V Le, Navdeep Jaitly, and Geoffrey E Hinton. A simple way to initialize recurrent
networks of recti ed linear unitsarXiv preprint arXiv:1504.009412015.

[33] Yann LeCun, Corinna Cortes, and CJ Burges. MNIST handwritten digit dataA@3elabs
[Online]. Available: http://yann.lecun.com/exdb/mni&t 2010.

[34] Mario Lezcano-Casado and David Martinez-Rubio. Cheap orthogonal constraints in neural
networks: A simple parametrization of the orthogonal and unitary groupntémnational
Conference on Machine Learning (ICMIpages 3794-3803, 2019.

[35] Shuai Li, Wanging Li, Chris Cook, Ce Zhu, and Yanbo Gao. Independently recurrent neural
network (indrnn): Building a longer and deeper rnn Pimceedings of the IEEE conference on
computer vision and pattern recognitigmages 5457-5466, 2018.

[36] Michael T McCann, Kyong Hwan Jin, and Michael Unser. Convolutional neural networks for
inverse problems in imaging: A reviedEEE Signal Processing Magazin®4(6):85-95, 2017.

[37] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing LSTM
language models. Imternational Conference on Learning Representatj@H.8.

[38] zakaria Mhammedi, Andrew Hellicar, Ashfaqur Rahman, and James Bailey. Ef cient orthogonal
parametrisation of recurrent neural networks using householder re ectiofsoteedings of
the 34th International Conference on Machine Learning-Volumep@ges 2401-2409. JMLR.
org, 2017.

[39] Tomas Mikolov, Martin Kara at, Lukas Burget, J&ernocly, and Sanjeev Khudanpur. Recur-
rent neural network based language modeEleventh Annual Conference of the International
Speech Communication Associati@0d10.

[40] Thomas Moreau and Joan Bruna. Understanding the learned iterative soft thresholding algorithm
with matrix factorization.arXiv preprint arXiv:1706.01333017.

[41] Radford M Neal et al. MCMC using Hamiltonian dynamics.

[42] Daniel Neil, Michael Pfeiffer, and Shih-Chii Liu. Phased LSTM: Accelerating recurrent network
training for long or event-based sequencesAdvances in Neural Information Processing
Systemspages 3882-3890, 2016.

[43] Arkaddii S Nemirovskii and Yu E Nesterov. Optimal methods of smooth convex minimization.
USSR Computational Mathematics and Mathematical Phy2&(®):21-30, 1985.

[44] Yurii E Nesterov. A method for solving the convex programming problem with convergence
rate o (1/k” 2). IrDokl. Akad. Nauk Sssvolume 269, pages 543-547, 1983.

[45] Murphy Yuezhen Niu, Lior Horesh, and Isaac Chuang. Recurrent neural networks in the eye of
differential equationsarXiv preprint arXiv:1904.129332019.

[46] Hamid Palangi, Li Deng, Yelong Shen, Jianfeng Gao, Xiaodong He, Jianshu Chen, Xinying
Song, and Rabab Ward. Deep sentence embedding using long short-term memory networks:
Analysis and application to information retrievédEEE/ACM Transactions on Audio, Speech,
and Language Processing4(4):694—707, 2016.

[47] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the dif culty of training recurrent
neural networks. Ifnternational Conference on Machine Learnjqmages 1310-1318, 2013.

[48] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library Aldvances in Neural Information Processing
Systemgpages 8024-8035, 2019.

[49] Boris T Polyak. Some methods of speeding up the convergence of iteration meti®aR.
Computational Mathematics and Mathematical Phys#5):1-17, 1964.

12

[50] Andrew Pulver and Siwei Lyu. LSTM with working memory. B917 International Joint
Conference on Neural Networks (IJCNMpages 845-851. IEEE, 2017.

[51] Zhongdi Qu, Parisa Haghani, Eugene Weinstein, and Pedro Moreno. Syllable-based acous-
tic modeling with CTC-SMBR-LSTM. 112017 IEEE Automatic Speech Recognition and
Understanding Workshop (ASRUrges 173-177. IEEE, 2017.

[52] Lamia Rahman, Nabeel Mohammed, and Abul Kalam Al Azad. A new LSTM model by
introducing biological cell state. 12016 3rd International Conference on Electrical Engineering
and Information Communication Technology (ICEEIQFages 1-6. IEEE, 2016.

[53] Hasim Sak, Andrew Senior, and Francoise Beaufays. Long short-term memory based recur-
rent neural network architectures for large vocabulary speech recogniiofiv preprint
arXiv:1402.11282014.

[54] Salesforce. Lstm and grnn language model toolkit for pyton¢ims://github.com/salesforce/
awd-Istm-Im 2017.

[55] llya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initial-
ization and momentum in deep learning.liiernational Conference on Machine Learnjng
pages 1139-1147, 2013.

[56] Arthur D Szlam, Karol Gregor, and Yann L Cun. Structured sparse coding via lateral inhibition.
In Advances in Neural Information Processing Systegrages 1116-1124, 2011.

[57] Sachin S Talathi and Aniket Vartak. Improving performance of recurrent neural network with
relu nonlinearity.arXiv preprint arXiv:1511.037712015.

[58] T. Tieleman and G. Hinton. Lecture 6.5—RmsProp: Divide the gradient by a running average
of its recent magnitude. COURSERA: Neural Networks for Machine Learning, 2012.

[59] Jos Van Der Westhuizen and Joan Lasenby. The unreasonable effectiveness of the forget gate.
arXiv preprint arxiv:1804.048492018.

[60] Eugene Vorontsov, Chiheb Trabelsi, Samuel Kadoury, and Chris Pal. On orthogonality and learn-
ing recurrent networks with long term dependencieProceedings of the 34th International
Conference on Machine Learning-Volume péges 3570-3578. JMLR. org, 2017.

[61] Bao Wang, Tan M Nguyen, Andrea L Bertozzi, Richard G Baraniuk, and Stanley J Osher.
Scheduled restart momentum for accelerated stochastic gradient desaint. preprint
arXiv:2002.105832020.

[62] Scott Wisdom, Thomas Powers, John Hershey, Jonathan Le Roux, and Les Atlas. Full-capacity
unitary recurrent neural networks. Advances in Neural Information Processing Systems
pages 4880-4888, 2016.

13

	Introduction
	Recap on RNNs and LSTM
	Our Contributions
	Related Work
	Notation

	Momentum RNNs
	Background: Momentum Acceleration for Gradient Based Optimization and Sampling
	Gradient Descent Analogy for RNN and MomentumRNN
	Analysis of the Vanishing Gradient Issue: Momentum Cell vs. Recurrent Cell
	Beyond MomentumRNN: NAG and Adam Principled Recurrent Neural Nets

	Experimental Results
	Pixel-by-Pixel MNIST
	TIMIT Speech Dataset
	Copying and Adding Tasks
	Word-Level Penn TreeBank
	NAG and Adam Principled Recurrent Neural Nets

	Additional Results and Analysis
	Conclusion
	Broader Impact and Ethical Considerations

